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Abstract

We revisit the classical Merton portfolio selection model from the perspective of inte-
grability analysis. By an application of a nonlocal transformation the nonlinear partial
differential equation for the two-asset model is mapped into a linear option valuation equa-
tion with a consumption dependent source term an identical result to that obtained by Cox
and Huang using measure theory and stochastic integrals. The nonlinear two-asset equation
is then analyzed using Lie symmetry group theory. We show that the linearisation is directly
related to the structure of the generalized symmetries.

1 Introduction

A classical financial problem is the modeling of optimal investment-consumption decisions
under uncertainty [1, 7, 9, 13, 14]. This was solved in the pioneering work of Merton [13, 14]
as an application of dynamic programming and later using approaches based on martingales
and stochastic integrals [7, 9]. A dichotomy which arises is that in the Merton dynamic
programming result [14] a nonlinear differential equation is derived on the optimal controls
and in the Cox-Huang stochastic integrals result [7] a linear differential equation is derived
on the optimal controls. The simplest instances of the models [14] and [7] are for a portfolio
comprising a stock following a geometric Brownian motion with return, α, and volatility, σ,
and a bond with interest rate, r. In [14] this is the nonlinear equation,

Jt + (rW − C)JW −
(α− r)2

2σ2

J2
W

JWW
+ U(C, t) = 0, (1)

while [7] gives the linear equation,

Ft +

(
(α− r)2

σ2
− r
)
ZFZ +

(α− r)2

2σ2
Z2FZZ = rF − C(Z, t). (2)

The purpose of the present paper is to study the integrability properties of Eq. (1)
and to demonstrate that (1) and (2) are equivalent and can be mapped into each other by
transformation on the optimal controls. At this point we apply a technique which follows
that of Karatzas and Shreve [10] and Carr et al [5, 6]. The transformation is implemented
by differentiating (1) with respect to W , setting Z = JW and inverting the roles of W and Z
as dependent and independent variables. This provides a way of linking the results directly
and goes beyond the explanation of the relationship between the models given in [7]. The
transformation is then explored within the context of Lie symmetry groups [3, 12, 16]. The
point symmetry structure of (1) was considered in Perets and Yashiv [17] who calculated
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the point symmetries of (1) and proved that the solution obtained by Merton [14] for the
hyperbolic risk aversion class of utility functions is related to the symmetry based. Here, we
show how the generalized infinitesimal Lie symmetries of (1) actually contain (2) inside the
symmetry structure and that this structure allows one to construct the linearization. This
provides a theoretical basis for our result.

2 The Classical Merton Model

It is assumed that U(C, t) and V (W,T ) are given functions. Recall that C is consumption
and W total wealth. Furthermore wealth is completely invested in a portfolio comprised of
a bond and a stock and there are no exogenous sources of income. The controls which are
to be optimized are consumption, C, and the fraction of total wealth invested in each asset:
π for the stock and 1−π for the bond. The underlying market is modeled by assuming that
the share price S and the bond price B follow

dSt = αStdt+ σStdZt, (3)

and
dBt = rBtdt (4)

respectively, and that Zt is a standard Brownian motion. The parameters α, σ and r are
constants. This leads to the budget constraint on wealth [14]

dWt = [(r + (α− r)π)Wt − C]dt+ πσWtdZt. (5)

The portfolio optimization problem may then be formulated as

J(W,S, t) = max
π,C

[∫ t

0

U(C, t)dt+ V (W,T )|Wt = W (t), St = S(t)

]
(6)

subject to the constraints (3) and (5). Since the parameters are constant we may set
J(W,S, t) = J(W, t) with an implicit dependence on the share price and the constraint (3)
through W . Applying dynamic programming on (5) and (6) we have, [14],

Jt + max
π,C

[
((r + (α+ (α− r)π)W − C)JW + 1

2
π2W 2σ2JWW

]
+ U(C, t) = 0. (7)

The first-order maximization conditions are, [14],

UC = JW , (8)

so that
C = U−1

C [JW ] (9)

and

π = − (α− r)
σ2

JW
WJWW

(10)

are the optimal controls. Substitution of this into (7) gives the Hamilton-Jacobi-Bellman
equation (1) subject to the terminal condition

J(W,T ) = V (W,T ). (11)

Note that a nonzero initial wealth, W (0) = W0 > 0, is also required.
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3 Reduction of the Nonlinear Merton Equation

We now give the mapping from (1) to (2). It may be seen if one differentiates Eq. (1) totally
with respect to W to give

JtW + (r− µ2)JW +

(
rW − C +

∂U

∂C

∂C

∂JW
− ∂C

∂JW
JW

)
JWW +

µ2

2

J2
W

JWW
JWWW = 0, (12)

where we have used C = C(JW , t) and set µ2 = (α− r)2/σ2. Although differentiating may
seem to complicate the situation it is this step that leads to the linearization. Eq. (12) may
be written as the potential system

Z = JW , (13)

Zt + (r − µ2)Z + (rW − C)ZW +
µ2

2

Z

Z2
W

ZWW +
∂C

∂Z
ZW

[
∂U

∂C
− Z

]
= 0. (14)

The optimality condition (8), UC = JW = Z, gives

Zt + (r − µ2)Z + (rW − C)ZW +
µ2

2

Z2

Z2
W

ZWW = 0. (15)

The problem now is to integrate (15) which may be treated as an independent equation in
Z and W . The change of variables

W = F (Z, t) (16)

inverts the roles of W and Z. The differentials transform as

Ft = − Zt
ZW

, FZ =
1

ZW
, FZZ = −ZWW

Z2
W

. (17)

We note that these are exactly the changes of variables used in [7]. Substitution of (16) and
(17 into (15) leads to the linear equation

Ft + (µ2 − r)ZFZ +
µ2

2
Z2FZZ = rF − C(Z, t). (18)

In addition to being identical to (2) this is clearly, apart from the term involving C(Z, t),
a form of the Black-Scholes equation [2] in which the left hand side has wealth as an option
on marginal utility with a risk premium related to Sharpe’s ratio via µ2 [19] and the right
hand side is equivalent to a return on a risk free asset when the consumption strategy is
given. It is subject to the intial condition

F (Z, 0) = W0 (19)

and the terminal condition
F (Z, T ) = V −1

W (W,T ). (20)

The latter follows from F = W and the terminal condtion on (1), J(W,T ) = V (W,T ), and
we have also assumed that V is invertible and differentiable. Finally we remark that this
transformation also holds for the time independent, t→∞, case of the Merton problem as
it appears in for example [8].

4 Connection to Lie Symmetry Groups

The transformation we have used above can be explained in terms of Lie symmetry groups
for differential equations [3, 16]. These are a well known tools from mathematical physics
which have appeared on occasion in various financial contexts [4, 9, 15, 20, 21, 18]. One
of the earliest indications of the rôle of symmetries in finance are the comments in the pa-
per by Pliska and Selby [18] which highlight them as a revolutionary way forward in terms
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of research. The usual results in the literature are to use point symmetries to derive the
transformational properties of given differential equations and to study the integrability
properties of models. Largely these have been concerned with local point symmetry prop-
erties of the underlying space [4, 20, 21, 15]. This is the calculation in [17] for Eq. (1).
Since the transformation we have used depends on differentiation point symmetries do not
give sufficient information to lead to (2). A broader class of symmetries are generalized
symmetries [16, 3] which expand the space of point symmetries (independent and depen-
dent variables) to include derivatives of the dependent variables. It is these that contain the
information relevant for the linearization described in Section 3. We give a brief calculation
below.

First we rewrite, for aesthetics reasons, Eq. (1) as

ut + (rx− C)ux −K
u2
x

uxx
+ U(C, t) = 0. (21)

We are interested in transformations which are functions of the variables (x, t, u, ux). The
corresponding generalized symmetry is a vector field of the form

v = φ(x, t, u, ux)∂u + τ(x, t, u, ux)∂t + ξ(x, t, u, ux)∂x. (22)

The symmetry condition is
v[2]E = 0, (23)

where E is (21) and v[2] is the second prolongation of the vector field, i.e.

v[2] = φ∂u + τ∂t + ξ∂x + φt∂ut + φx∂ux + φxx∂uxx + φtt∂utt + φxt∂uxt . (24)

Since the equation is independent of uxt and utt these terms fall away immediately, the
remaining terms φx, φt, φxx are defined (in the notation of Olver [16]) as

φt = Dt(φ− ξux − τut) + ξuxt + τutt, (25)

φx = Dx(φ− ξux − τut) + ξuxx + τutx, (26)

φxx = D2
x(φ− ξux − τut) + ξuxxx + τutxx. (27)

Dx and Dt are total differential operators. Condition (23) and the optimality condtion (8),
now UC = ux so C = C(ux, t), give

φt + (rx− C)φx − 2K
ux
uxx

φx +K
u2
x

u2
xx

φxx = 0. (28)

The full set of symmetries is not required here. We merely wish to demonstrate how the
transformation we obtained is related to the theory. Setting φ = τ = 0

φt = −ξtux (29)

φx = −ξxux (30)

φxx = −ξxxux − 2ξxuxx. (31)

The symmetry condition is

−ξtux − (rx− C)ξxux + 2K
ux
uxx

ξxux + rξux +K
u2
x

u2
xx

(−ξxxux − 2ξxuxx) = 0. (32)

Collecting terms and dividing by ux

−ξt − (rx− C)ξx −K
u2
x

u2
xx

+ rξ = 0. (33)
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The added constraint ξ = ξ(t, x, ux) gives

−∂ξ
∂t
− ∂ξ

∂ux
uxt− (rx−C)

[
∂ξ

∂x
+

∂ξ

∂ux
uxx

]
−K u2

x

u2
xx

[
∂2ξ

∂x2
+

∂2ξ

∂ux∂x
uxx +

∂2ξ

∂u2
x

u2
xx

]
+rξ = 0.

(34)
This may be separated in powers of uxx (since ξ is independent of uxx) to give

∂ξ

∂t
+

∂ξ

∂ux
(2K − r)ux +Ku2

x
∂2ξ

∂u2
x

= rξ − ∂ξ

∂x
(rx− C) (35)

∂2ξ

∂ux∂x
= 0, (36)

∂2ξ

∂x2
= 0. (37)

We solve (36) and (37) to give
ξ = ax+ b (38)

where a = a(t) and b = b(t, ux). Substituting into (35) and separation into powers of x we
have

∂b

∂t
+ (2K − r)ux

∂b

∂ux
+Ku2

x
∂2b

∂u2
x

= rb− Ca (39)

and
∂a

∂t
= 0. (40)

Finally
∂b

∂t
+ (2K − r)ux

∂b

∂ux
+Ku2

x
∂2b

∂u2
x

= rb− a0C (41)

where
a = a0 (42)

for some constant a0. We have
ξ = a0x+ b(t, ux), (43)

so that the generalized symmetry is

v = a0x∂x + b(t, ux)∂x. (44)

This we write as
V1 = x∂x (45)

and
V2 = b(t, ux)∂x (46)

where without loss of generality a0 = 1.
The information contained in the symmetry can be interpreted from a knowledge of

standard symmetry properties. The occurrence of the linear partial differential equation in
the function b suggests that a mapping from E to (41) is possible. Since (44) is a generalized
symmetry and depends on ux its structure is related to DxE rather than E itself, where
E is (21) likewise a generalized symmetry as a function containing uxx would depend on
D2
xE and so forth [16]. This points to the differentiation (12) in Section 3. The change of

variables (16) may be seen from using a comparison with the symmetries of the standard
one dimensional heat equation [16]. A feature of the point symmetries of a linear partial
differential equation such as the one-dimensional heat equation

∂p

∂t
=
∂2p

∂y2
(47)

are the generators
G1 = p∂p (48)
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and
G2 = f(t, y)∂p (49)

where f(t, x) again satisfies the heat equation

∂f

∂t
=
∂2f

∂y2
. (50)

These reflect the linearity and homogeneity of the equation and G2 in particular is related
to the superposition of solutions for linear partial differential equations [3, 16]. Comparing
the generators G1 and G2 with V1 and V2 one may see that the rôles of dependent and
independent variables are to be reversed in order to have the symmetries G2 and V2 in the
same form. This is exactly (16) purely on a Lie group theoretic basis.

5 Conclusion and Remarks

In this paper we have presented a transformation which maps the nonlinear partial differen-
tial equation for the classical two-asset Merton portfolio selection model [14, 13] to a linear
partial differential equation. Moreover this linear differential equation is identical to the cor-
responding differential equation in the Cox-Huang model [7] which approaches the classical
Merton problem using martingales and stochastic integrals. Our result demonstrates that
the integrability of the model is in fact independent of the approach taken and rather has
to do with the structure of the differential equation and underlying relationships between
contingent claims and portfolio selection. Evidence for this is that the generalized symme-
tries contain the linear equation derived in [7]. A further point of interest is that the use
of symmetry methods and transformations on the evolution equations such as (1) are, from
the nature of our result, analogous to the manipulations performed in the martingales and
stochastic integrals approach of Cox and Huang [7], before the linear differential equation
in their work.

Acknowledgements

The authors acknowledge P. Gapeev of the London School of Economics for pointing out
reference [18].

References

[1] Benth F. E. and K. H. Karlsen, A note on Merton’s portfolio selection problem for the
Schwartz mean reversion model, Stoch. Anal. Appl., 23, 687-704, (2005).

[2] Black F. and M. Scholes, The Pricing of Options and Corporate Liabilities, J. Pol.
Econ. 81, 3, 637-654, (1973).

[3] Bluman G. W. and S. Kumei, Symmetries and Differential Equations, Appl Math Sci
81, Springer-Verlag New York (1989).

[4] Bordag L. A. and A. Y. Chmakova. Explicit solutions for a nonlinear model of financial
derivatives. Int. J. Theor. and App. Fin. 10, 1, 1-21, (2007).

[5] Carr P., Lipton A. and Madan D., The reduction method for valuing derivative securi-
ties, Working paper, New York University, (2000).

[6] Carr P., Tari M. and Zariphopoulou, Closed form option valuation with smiles, Working
paper, Banc of Americas Securities, (1999).

[7] Cox J. C. and C. -f. Huang, Optimal Consumption and Portfolio Policies when Asset
Prices Follow a Diffusion Process J. Econ. Th., 49, 33-88, (1989).

6



[8] Davis. M. H. A. and A. R. Norman, Portfolio Selection with Transaction Costs, Math-
ematics of Operations Research, 15, 4, 676-713, (1990).

[9] Dixit A. and R. Pindyck, Investment Under Uncertainty Princeton University Press,
Princeton, NJ, (1994).

[10] Karatzas I. and Shreve S.E., Methods of Mathematical Finance, Springer Verlag, New
York, (1998).

[11] Leach P. G. L., J. G. O’Hara and W. Sinkala, Symmetry based solution of a model for
a combination of risky investment and riskless investment, J. Math. Anal. Appl., 334,
368-381, (2007).

[12] Lie S., Differentialgleichungen, Chelsea, New York, (1967).

[13] Merton R. C., Lifetime Portfolio Selection Under Uncertainty: The Continuous Time
Case. Rev. Econ. Stats. 51, 247-57, (1969).

[14] Merton R. C., Optimum Consumption and Portfolio Rules in a Continuous Time Model.
Journal of Economic Theory, 3, 373-423, (1971).

[15] Naicker V., K. Andriopoulous and P. G. L. Leach, Symmetry Reductions of a Hamilton-
Jacobi-Bellman Equation arising in Financial Mathematics, Journal of Nonlinear Math-
ematical Physics, 12, 268, (2005).

[16] Olver P. J., Applications of Lie Groups to Differential Equations Graduate Texts in
Mathematics 107 Second edition, Springer-Verlag, New York, (1993).

[17] Perets G. S. and E. Yashiv, Deriving Hara Utility ”Endogeneously”:Invariance Restric-
tions in Economic Optimization, Working paper, Tel Aviv University.

[18] Pliska S. R. and M. J. P. Selby, On a free boundary problem that arises in portfolio
management, Phil. Trans. R. Soc. London, A, 347, 555-561, (1994).

[19] Sharpe W. F., The Sharpe Ratio, Journal of Portfolio Management, 21, 1, 49-58,
(1994).

[20] Sinkala W., P. G. L. Leach, J. G. O’Hara, Optimal system and group invariant solu-
tions of the Cox-Ingersoll-Ross pricing equation, Appl. Math. and Comp., 201, 95-107,
(2008).

[21] Sinkala W., P. G. L. Leach and J. G. O’Hara, Zero coupon bond prices in the Vasicek
and CIR models: Their computation and group invariant solutions, Math. Meth. Appl.
Sci., 31, 665-678, (2008).

7


